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This paper deals with an extension of the energy climb method to
solve time-optimal turns for hypersonic rocket-powered aircraft.
Specifically, an aircraft makes a coordinated turn to a new heading
angle in minimum time, without constraints on the maximum lift.
Although there is some change in altitude during the maneuver, it is
assumed small enough ccmpared to the horizontal dimensions of the turn
that the flight path angle is always small. Because of the hypersonic
speed, the aircraft energy is assumed to be almost entirely kinetic,
making it a function of velocity only.

To execute the optimal turn, the pilot is given optimal schedules
to follow for the roll angle u and the aircraft altitude, representeqd
by the air density p. Thrust and weight are assumed constants. The
optimal schedules are determined from the analysis given in this paper.
At the start of the turn, the pilot knows his initial energy Eg along
with the desired final energy E and azimuth change x. Figure 3 permits
him to estimate which optimal trajectory of x vs E/Eo contains the
above final conditions. The trajectories are characterized by values
of the parameter A. [See equation (20)]. With the value of X from the
desired trajectory and the initial energy known, the pilot refers to
Figures 4 and 5. Figure 4 gives the schedule to be followed for roll
angle y as a function of A , t and Eo' Figure 5 gives the altitude
schedule as a function of A, t and Eo' Figure 6 shows these results
applied to a particular problem.

In a recent technical note, Kelly and Edelbaum(l) proposed a
formulation of the optimal turn problem which would permit analytic,
closed-form integration of the Euler equations. By making additional
assumptions listed above it is possible to solve the problem in closed

form. The following is a simplified example showing how the technique
can be applied.



Assuming a parabolic polar, the drag force on a hypersonic air-

craft can be written as
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where S is a reference area, p= air density, V = velocity, L = lift

and CDO and K are constants (2). If the plane possesses a roll angle
u and weight W, 1

W = Lcosu . ) ,1(2)

This approximation results from assuming the f£light path angle to

Kinetic Energy)
Welght

the turn angle X comprise the state and p and u the controls

and
(l).

be negligible. The specific energy E (E =
The following Hamiltonian is to be maximized with respect to p and y.

H=ME + A_x ‘ (3)

where AE and AX are Lagrange multipliers and (*) denotes differentia-
tion with respect to time. From reference (1),
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Using equations (1), (2), (4) and (5) in (3) yields and expanded
expression for the Hamiltonian. :
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The solution for optimum H now proceeds. With respect to o,
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Substitdting for p into equation (6) yields

H =
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Now, optimize with respect to tan H.
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Substituting into equation (8), after computing secu and tan W,
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This is the equation for optimum H.
The system equations of motion are now used to obtain X as a

function of the specific energy E. Since the plane is moving at hyper-
sonic velocities, making the gravitational potential energy negligible

compared to the kinetic energy,
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=75
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v = Y2gE (11)

decoupling E from the air density po. Substituting (11) into equation
(10) yields
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Applying the system equations of motion

- = E ' ) ' (13)



5 o=x. (14)

it is apparent that
E ( E

Performing the above differentiations and using (15)
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Now, equation (12) is used to obtain AE as a function of E and .
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Substituting equation (17) into (16) and regrouping terms,
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The indefinite integral of % is now seen to be
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where the property AX = const. has been used (l). The expression in

(19) can be rewritten in terms of the ratio (specific energy E/

initial specific energy Eo) and other terms:
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Evaluating the definite integral gives a series of curve pairs,
plotted for various A in figure 1. Note that when XA = 1, the curve
pair merges.

Now, we obtain t as a function of E. Equation (13) is inverted

to obtain
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We now combine equation (11) and (17) with (23) and solve for dt
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using the deginitions of(% max and A from equation (20). The indefinite
t

integral of i is found with little effort, and, substituting n for
E/Eo, we obtain
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Two positive integrals result for each value of A in equation (25).
They are shown in fiqure 2. As in figure 1, letting A= 1 gives only
one curve, Figure 3 shows yx vs. E/E° with normalized time cross-plot-
ted on the same graph,

In order to obtain the time-optimal schedules for y and 9, we

set H = 1 by convention [see ref. (3)]. From equation (20), it is
apparent that
2 2
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Equation (9) can be solved for sec u to yield
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After extensive manipulation using equations (11),(17),(26) and (27),
we obtain
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where the + sign follows the + in equation (25). Thus, two distinct

H = se (28)

optimal bank angle trajectories result for each value of A in figure
4; they correspond to the two X vs n trajectories for each value of A
in figure 3., The corresponding altitude schedule for

Normalized o vs V/g——
2E,

is given in figure 5,

Some interesting phenomena are seen in Figures 3-6. Note that,
according to Figure 3, A cannot be smaller than .6 for the backward
bending curves on the left of the graph. These curves result from
assuming the (-~) signs in equations (20) and (24). The reason for
this constraint can be seen from equation (24)., 1If

2
A < 1_(‘1". 97
T L /min ,
the derivative %% is positive for certain values of n less than 1.

Performing an integration of g% in the negative direction (which yields
the backward bending curves seen above) causes t to be negative. Since-

this is an impossible result, we have to obey the above A constraint.
Figure 4 gives a better physical picture of this situation. When

the critical value of A is assumed, the aircraft is required to bank
at a 90° (1.56 rad) roll angle. From equations (2) and (5), the lift
goes to infinity and i goes to infinity when 90° roll is executed.
This causes an impulsive drop in energy because the drag is proportion-
al to the square of the lift [equation (1)]. 1In figure 3 there is a
separate family of backwards bending curves for the critical A value.
Each curve starts out with a different initial energy, each value less
than EO because of the above impulsive energy change. As the initial
energy approaches zero, the time needed to achieve any desired azimuth
change approaches zero. In the limit the infinite drag causes an
instantaneous loss of all kinetic energy (forward motion stops) and
any desired azimuth change occurs in zero time.
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FIGURE 3: X vs. E/E0 With Time Cross-plot
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figure 6: Performance Curves for Particular Parameter Values



